Generative Design Primer
  • Welcome
  • Introduction to Generative Design
    • Computational Design
    • Generative Design
      • What is Generative Design?
      • Why should I use Generative Design?
      • What goes into a Generative Design Process?
        • Anatomy of each stage
      • Examples of Generative Design
        • MaRs Innovation District of Toronto
        • Furniture Design
        • A Further Analogy
      • Anatomy of a Good Generative Design Process
    • Visual Programming
    • Dynamo
    • Generative Design for Revit and Dynamo
  • Deeper Dive to Generative Design
    • Algorithms
      • What are Algorithms?
      • Generators
      • Evaluators
      • Solvers
    • Optioneering
    • Optimization
      • What is Optimization?
      • Objective Function
      • Constraints
      • Data
      • Defining Goals
    • Genetic Algorithms
      • What is a Genetic Algorithm?
      • Initialization phase
      • Evaluation Phase
      • Selection Phase
      • Crossover Phase
      • Mutation Phase
    • Other Techniques
    • Genetic Algorithm Q&A
  • Hello Generative Design for Revit and Dynamo!
    • Installing Generative Design
    • Setting up a Graph for Generative Design
    • Running Generative Design
    • Visualizing Results in Generative Design
    • Refinery Toolkit
      • Installing the Refinery Toolkit from the Dynamo Package Manager
      • Using the Refinery Toolkit
    • Space Analysis for Dynamo
      • Installing the Space Analysis for Dynamo package from the Dynamo Package Manager
      • Using the Space Analysis Package
    • Using Revit alongside Generative Design
      • Using Data from Revit
      • Remember Node Inputs
      • How to Test Revit Data Capture
      • Detailed Example Workflow
      • Sharing Logic and Results
      • Current Limitations
      • Accessing Generative Design Directly From Revit
  • Sample Workflows
    • Getting Started Workflows
      • Highest Point of a Surface
      • Minimum Volume and Maximum Surface
    • Architectural Workflows
      • Building Mass Generator
      • Building Positioning based on Solar Analysis
      • Office Layout
      • Grid Object Placement in a Room
      • Entourage Placement Exploration
    • MEP Workflows
      • Distributing Spotlights in an Office Space
    • Structural Workflows
    • BIM Workflows
      • Placement of views on sheets
    • Community Examples
      • Guidelines
      • List Of Examples
  • Generative Design in Your Office
    • What Generative Design Can Be Used For?
    • What Generative Design Can’t Be Used For?
    • How to Convince Senior Stakeholders of Using Generative Design?
    • The Role of a Generative Designer
    • Hiring a Generative Designer
  • Next Steps
    • Machine Learning
      • What is Machine Learning?
      • Is Generative Design Machine Learning?
      • Can Machine Learning and Generative Design Work Together?
  • Appendix
    • Glossary
    • Reference Material
    • Need Professional Help?
Powered by GitBook
On this page

Was this helpful?

  1. Introduction to Generative Design
  2. Generative Design

What is Generative Design?

PreviousGenerative DesignNextWhy should I use Generative Design?

Last updated 7 months ago

Was this helpful?

You may have encountered the term 'generative design' in the context of producing design permutations, creating geometry from some simple inputs, or even just building computational graphs using Dynamo or Grasshopper.

We see generative design (/ gen·er·a·tive de·sign / noun) as:

A collaborative design process between humans and computers. During this process, the designer defines the design parameters and the computer produces design studies (alternatives), evaluates them against quantifiable goals set by the designer, improves the studies by using results from previous ones and feedback from the designer, and ranks the results based on how well they achieve the designer’s original goals.

Above: Some generated alternatives - Mars Innovation District - The Living

Generative design is a specific application of the computational design approach, with the following distinctions:

  • The designer defines goals to achieve a design (rather than the exact steps).

  • The computer helps the designer to explore the design space and generate multiple design options (not just one).

  • The computer enables the designer to find a set of optimal solutions that satisfy multiple competing goals.

  • The designer compares multiple design scenarios to find a set of design options that fits the design goals.