Generative Design Primer
  • Welcome
  • Introduction to Generative Design
    • Computational Design
    • Generative Design
      • What is Generative Design?
      • Why should I use Generative Design?
      • What goes into a Generative Design Process?
        • Anatomy of each stage
      • Examples of Generative Design
        • MaRs Innovation District of Toronto
        • Furniture Design
        • A Further Analogy
      • Anatomy of a Good Generative Design Process
    • Visual Programming
    • Dynamo
    • Generative Design for Revit and Dynamo
  • Deeper Dive to Generative Design
    • Algorithms
      • What are Algorithms?
      • Generators
      • Evaluators
      • Solvers
    • Optioneering
    • Optimization
      • What is Optimization?
      • Objective Function
      • Constraints
      • Data
      • Defining Goals
    • Genetic Algorithms
      • What is a Genetic Algorithm?
      • Initialization phase
      • Evaluation Phase
      • Selection Phase
      • Crossover Phase
      • Mutation Phase
    • Other Techniques
    • Genetic Algorithm Q&A
  • Hello Generative Design for Revit and Dynamo!
    • Installing Generative Design
    • Setting up a Graph for Generative Design
    • Running Generative Design
    • Visualizing Results in Generative Design
    • Refinery Toolkit
      • Installing the Refinery Toolkit from the Dynamo Package Manager
      • Using the Refinery Toolkit
    • Space Analysis for Dynamo
      • Installing the Space Analysis for Dynamo package from the Dynamo Package Manager
      • Using the Space Analysis Package
    • Using Revit alongside Generative Design
      • Using Data from Revit
      • Remember Node Inputs
      • How to Test Revit Data Capture
      • Detailed Example Workflow
      • Sharing Logic and Results
      • Current Limitations
      • Accessing Generative Design Directly From Revit
  • Sample Workflows
    • Getting Started Workflows
      • Highest Point of a Surface
      • Minimum Volume and Maximum Surface
    • Architectural Workflows
      • Building Mass Generator
      • Building Positioning based on Solar Analysis
      • Office Layout
      • Grid Object Placement in a Room
      • Entourage Placement Exploration
    • MEP Workflows
      • Distributing Spotlights in an Office Space
    • Structural Workflows
    • BIM Workflows
      • Placement of views on sheets
    • Community Examples
      • Guidelines
      • List Of Examples
  • Generative Design in Your Office
    • What Generative Design Can Be Used For?
    • What Generative Design Can’t Be Used For?
    • How to Convince Senior Stakeholders of Using Generative Design?
    • The Role of a Generative Designer
    • Hiring a Generative Designer
  • Next Steps
    • Machine Learning
      • What is Machine Learning?
      • Is Generative Design Machine Learning?
      • Can Machine Learning and Generative Design Work Together?
  • Appendix
    • Glossary
    • Reference Material
    • Need Professional Help?
Powered by GitBook
On this page

Was this helpful?

  1. Next Steps
  2. Machine Learning

Can Machine Learning and Generative Design Work Together?

PreviousIs Generative Design Machine Learning?NextAppendix

Last updated 8 months ago

Was this helpful?

Machine learning can be a great tool for complementing generative design when large datasets are available.

Technically, we could try to leverage ML at any stage of the generative design process, but one of the most promising applications of ML is in creating a more realistic starting condition for the generative design system.

Often when starting a generative design process, the computer will create a first design using random inputs or values and then further explore options and optimize them. Machine learning can be very effective in creating this initial design based on accurate historical data, which the generative design process will then use to produce potentially better or more relevant designs.

Simply put, better input data should lead to better outcomes.

Injecting machine learning to complement the generative design process by producing better first designs based on data