Generative Design Primer
  • Welcome
  • Introduction to Generative Design
    • Computational Design
    • Generative Design
      • What is Generative Design?
      • Why should I use Generative Design?
      • What goes into a Generative Design Process?
        • Anatomy of each stage
      • Examples of Generative Design
        • MaRs Innovation District of Toronto
        • Furniture Design
        • A Further Analogy
      • Anatomy of a Good Generative Design Process
    • Visual Programming
    • Dynamo
    • Generative Design for Revit and Dynamo
  • Deeper Dive to Generative Design
    • Algorithms
      • What are Algorithms?
      • Generators
      • Evaluators
      • Solvers
    • Optioneering
    • Optimization
      • What is Optimization?
      • Objective Function
      • Constraints
      • Data
      • Defining Goals
    • Genetic Algorithms
      • What is a Genetic Algorithm?
      • Initialization phase
      • Evaluation Phase
      • Selection Phase
      • Crossover Phase
      • Mutation Phase
    • Other Techniques
    • Genetic Algorithm Q&A
  • Hello Generative Design for Revit and Dynamo!
    • Installing Generative Design
    • Setting up a Graph for Generative Design
    • Running Generative Design
    • Visualizing Results in Generative Design
    • Refinery Toolkit
      • Installing the Refinery Toolkit from the Dynamo Package Manager
      • Using the Refinery Toolkit
    • Space Analysis for Dynamo
      • Installing the Space Analysis for Dynamo package from the Dynamo Package Manager
      • Using the Space Analysis Package
    • Using Revit alongside Generative Design
      • Using Data from Revit
      • Remember Node Inputs
      • How to Test Revit Data Capture
      • Detailed Example Workflow
      • Sharing Logic and Results
      • Current Limitations
      • Accessing Generative Design Directly From Revit
  • Sample Workflows
    • Getting Started Workflows
      • Highest Point of a Surface
      • Minimum Volume and Maximum Surface
    • Architectural Workflows
      • Building Mass Generator
      • Building Positioning based on Solar Analysis
      • Office Layout
      • Grid Object Placement in a Room
      • Entourage Placement Exploration
    • MEP Workflows
      • Distributing Spotlights in an Office Space
    • Structural Workflows
    • BIM Workflows
      • Placement of views on sheets
    • Community Examples
      • Guidelines
      • List Of Examples
  • Generative Design in Your Office
    • What Generative Design Can Be Used For?
    • What Generative Design Can’t Be Used For?
    • How to Convince Senior Stakeholders of Using Generative Design?
    • The Role of a Generative Designer
    • Hiring a Generative Designer
  • Next Steps
    • Machine Learning
      • What is Machine Learning?
      • Is Generative Design Machine Learning?
      • Can Machine Learning and Generative Design Work Together?
  • Appendix
    • Glossary
    • Reference Material
    • Need Professional Help?
Powered by GitBook
On this page

Was this helpful?

  1. Deeper Dive to Generative Design
  2. Genetic Algorithms

Selection Phase

PreviousEvaluation PhaseNextCrossover Phase

Last updated 5 years ago

Was this helpful?

At each iteration, a certain proportion of the population (or, a subset of potential design solutions) is 'selected' to 'breed' so that their features can be passed on to the next generation. Because the goal of a generative algorithm is optimization, we want it to converge high-quality traits in order to provide the best solution possible.

This value is currently fixed in Generative Design and is not yet available as a setting.

Given this, it makes sense to select only those solutions with the best possible features for breeding.

In the selection stage, selection is done on the basis of the fitness value created by the fitness function. Individuals with a higher fitness score are more likely to be selected to breed. In this way, good features are preserved in the population and passed on to future generations.

As a final note, in certain circumstances it can be exceedingly difficult - or even impossible - to define a useful fitness function. If one can be defined, we need to be able to describe it with a numerical fitness value for it to be useful.

Randomized sampling and simulation are two useful workarounds for when we faced with this challenge.

Remember that individuals with a higher fitness score have better genes ().

see previous section for a detailed discussion of fitness and fitness functions